
JOURNAL OF COMPUTATIONAL PHYSICS 102, 3 10-3 18 ( 1992) 

A Spectral Multigrid Method for the Stokes Problem 
in Streamfunction Formulation 

WILHELM HEINRICHS 

Mathematisches Institut der Heinrich-Heine-Universittit Diisseldorf, Universitiitsstr. I, D-4000 Diisseldorf 1, Germany 

Received March 23, 1990; revised September 30, 1991 

Suitable spectral multigrid components for the Stokes problem in 
streamfunction formulation are presented. We split the Stokes problem 
into a system of two equations with the Laplace operator. We discretize 
by means of a collocation (or pseudo spectral) method. Precondi- 
tioning with finite differences is employed. Numerical results for the 
spectral multigrid method are presented. 0 1992 Academtc Press. Inc 

1. INTRODUCTION 

In the last few years a number of spectral techniques have 
been developed to solve the stationary Stokes equations in 
a two-dimensional domain Q = (- 1, l)‘, provided with 
Dirichlet boundary conditions. Most of them rely on the 
formulation of the problem where the unknowns are the 
velocity w  = (w, , w2) and the pressure p: 

-v Aw+gradp=g in Q, (1.1) All/-[=0 in a, 

div w  = 0 in Q (1.2) N=f in 52 

with homogeneous Dirichlet boundary conditions on w. 
Here v > 0 denotes the diffusion parameter and g = (g, , gZ) 
denotes a given vector-valued function defined in 52. In 
order to satisfy exactly Eq. (1.2) in the discrete problem, we 
introduce the streamfunction $. From Eq. (1.2) it follows 
that the velocity can be written as 

w=c”rl* :=(Z, -g). 

Next, Eq. (1.1) is equivalent to the fourth-order equation: 

v A21//=curlg in Q, 

where curl g := (8/8y)g, - (a/ax)g,. If we introduce a 
function f given by 

f =v-l curlg in Q, 

then (1.1) is equivalent to 

A’t+b=f in Q. (1.3) 

The boundary conditions on the velocity induce boundary 
conditions on Ic/: 

*+I on af2, 

where alan denotes the outer normal derivative on &2. 
For the purpose of developing a spectral multigrid 

(SMG) method we split Eq. (1.3) into an equivalent system 
of two equations with the Laplace operator. We further 
introduce a function c defined in 0 = Q u 8.Q. Now the split 
system reads as 

(1.5) 

with Dirichlet boundary conditions (1.4). 
We discretize the system (1.5) by means of a collocation 

(or pseudo spectral) method. Convergence has been proven 
by Bernardi er al. [ 1 ] for a variational formulation of (1.5). 
In the one-dimensional case we proved convergence and 
derived optimal error estimates (see [lo]). Vanel, Peyret, 
and Bontoux [17], Ehrenstein and Peyret [9] have 
developed r and collocation influence-matrix techniques for 
the streamfunction-vorticity formulation. Here we present a 
somewhat different collocation method which in numerical 
computations yields a somewhat higher spectral accuracy. 

We further present a suitable finite difference (FD) dis- 
cretization of the system (1.5). For an iterative method the 
FD operator is used for preconditioning. Without precondi- 
tioning the spectral operator has a condition number 
growing as O(N4), where N denotes the maximal degree of 
polynomials. By exact preconditioning we obtain an eigen- 
value spectrum of [ 1, n2/4] which is already known from 
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preconditioning of second-order model problems (see 
[S, 5.41). Hence the reduction of the condition number is 
very impressive. A further reduction can be achieved by 
using finite element methods (see [S, 6, 8, 141). 

In the following we present effective SMG components. 
The transfer operators are standard (see [3,12,13,18,19]). 
For relaxation we employ a Richardson relaxation com- 
bined with defect correction. The defect correction is based 
on a FD approximation. Here we employ one step of an 
alternating line-Gauss-Seidel relaxation for approximating 
the solution of the FD problem. This type of relaxation 
turned out to be the most effective smoother for SMG 
methods (see [3, 12, 131). An alternative is given by 
incomplete LU (ILU)-decomposition [12, 18, 191. In 
earlier papers we found that this technique is much more 
expensive than line-Gauss-Seidel relaxation. The con- 
vergence factors are almost the same. 

Hence Eqs. (2.4) and (2.5) yield M= (N+ 1)2 + (N- 1)2 = 
2(N2 + 1) conditions of collocation for the M unknowns 

a N-2= (akLl,...,(N-l)2 

and 

b, = (b/h= I,...,(N+ 1~7 

where 

ak = a n.m for k=m(N- l)+n+ 1, 

n,m=O ,..., N-2, 

b, = bn,, for l=m(N+ l)+n+ 1, 

n, m = 0, . . . . N. 

2. PSEUDO SPECTRAL DISCRETIZATION In order to write the system (2.4), (2.5) in matrix notation 
we further define the vectors 

In order to give the pseudo spectral discretization of (1.4), 
(1.5) we introduce the collocation nodes oNE@v+l)* zero vector, 

(x;,yj)=(cos$cos~), 
h--2= aAk=l,...,(N~l)*~ @N-‘)2> 

i,j=O ,..., N, (2.1) 
where 

in 6. Clearly, the collocation nodes in 52 are given by 
(x,,yj), i, j= 1, . . . . N- 1. 

fk =f txi2 Yj) for k=(j-l)(N-l)+i, 

The functions $ and 5 are spectrally approximated by i, j= 1, . . . . N- 1 

polynomials +N+2EpNfZ, iNc[FD,, where P,, MEN 
denotes the subspace of polynomials of degree <M in the and matrices’ 
variables x and y. Furthermore, $,,,+2 is required to fulfill 
the Dirichlet boundary conditions. Hence the approxima- 

1E @N+ l)*,(N+ l)* unit matrix, 

tions IC/N+2, iN can be written as 0 E R’N- l)*.(N- 1j2 zero matrix, 

(2.2) 

and 

J E~W+1)2.(N-l)2 
SP 

spectral operator for A applied to aN- 2 

and evaluated in all collocation points of Q. 
A 

SP 
E [W’N- I?.@+ I)* 

spectral operator for A applied to b, 

and evaluated in all collocation points of Q. 

where Tk denotes the kth Chebyshev polynomial. 
The pseudo spectral problem related to (1.4), (1.5) now 

In matrix notation the spectral system (2.4), (2.5) can now 
be written as 

reads as follows: Find $N+ 2 and iN such that 

A* Nt Zbir Yj) - CNL Yj) 

=o (i, j= 0, . . . . N), 

AiN(x,, Yj) 

=f(xiy Y,) (i, j= 1, . . . . N- 1). 

(2.4) 
For an effective solution of (2.6) it is necessary to evaluate 
the spectral operator i,, in an effective way. Hence we have 

(2.5) to look for a suitable evaluation of A,, and 6,,. The evalua- 
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tion of A,, can be efficiently accomplished by standard 
techniques introduced in previous papers by Zang et al. 
[ 18, 191 and Heinrichs [12, 131. Here fast cosine trans- 
forms (based on (real) fast Fourier transforms (FFTs)) can 
be efficiently employed. The amount of computational work 
results in O(N2 In N) arithmetic operations (see Temperton 
Cl% 161). 

Therefore we only have to find an effective way of 
evaluating ASP. Here we propose the following strategy. 
We first consider the one-dimensional evaluations of 

N-2 

(1 - YfJ2 c bm~,(Yj), b,,,ER (2.7) 
m=O 

and 

N-2 

Hgo a,[(1 -x212 TJ” (xi), a,ER (2.8) 

for i, j = 0, . . . . N. We observe that (2.7) can be efficiently 
evaluated in the following way: we set b,- , = b, = 0, apply 
a fast cosine transform to the sum up to N, and finally multi- 
ply the values in yj by the term (1 - y,‘)‘. This procedure 
requires a total amount of O(N In N) arithmetic operations. 
The effective evaluation of the sum (2.8) is more com- 
plicated. First we explicitly write the second derivative: 

[(l-x2)2 T,(x)]“=4(3 x2 - 1) T,(x) - 8x( 1 - x2) 

x T;(x) + (1 - x’)~ T;(X). (2.9) 

Now we once more set aN _, = aN = 0. We further define 
matrices E and F which perform the multiplications by the 
functions x, 1 -x2 in Fourier space, i.e., Ez x and 
FE 1 -x2. The entries of E, FER~+‘,~+I can be taken 
from the formulas written by Gottlieb and Orszag [ll, 
Appendix (A.1 l), (A.12)]. They are explicitly given by 
E=(ewh,,=l,.,_, N+I, F=(f,,,L,,=l,..., N+l, where 

and 

i 

fck-,, l=k-1 
L 

ek.l= 2t Z=k+l 

0, else 

with 

l -&k+ck-I), I=k 

f 
‘c -ii k-2, I=k-2 

k.I -L 
43 I=k+2 

0, else 

k >, 2, 
k= 1, 
k< 1. 

(2.10) 

(2.11) 

From these representations it becomes clear that E and F 
are sparse with 2 and 3 non-vanishing diagonals. We further 
denote by DE RN+‘,N+l the spectral matrix in Fourier 
space which corresponds to the first derivative (see 
Cll, ~4.911). 

Here we write the corresponding formula explicitly; 
D=(~k,,)k,,=l,..., N+,isgivenb 

I>k+ 1, k+lodd, 

else. 

Since the non-vanishing entries of D in columns are identi- 
cal (apart from the first row where the entries are divided by 
2) the evaluation of D can be efficiently accomplished in 
O(N) arithmetic operations. Hence the total evaluation of 
(2.8) corresponds in Fourier space to the evaluation of the 
matrix Dsp, where 

D,, = 4(3E2 - i) - 8EFD + F2D2. 

Here id RNfl,N+l denotes the unity matrix. From the 
above considerations it becomes clear that the evaluation of 
D,, requires a total amount of O(N) arithmetic operations. 
Since the resulting polynomial is a polynomial of degree N, 
the physical evaluation in (2.8) can be efficiently accom- 
plished by a fast cosine transform. Altogether we conclude 
that the evaluation of dsP only requires O(N2 In N) 
arithmetic operations. 

Since the iterative procedure (see Section 4) further 
requires FD preconditioning we also have to introduce the 
spectral operator in physical space. For this purpose we 
define vectors, 

iN=(il),=I ,..., (N+1)2ER(N+1)2, 

where 

$k=$N+2(Xi?Y,) .for k=(j-l)(N-l)+i, 

i, j= 1, . . . . N- 1 

and 

cl= cN(Xi, yj) for I=j(N+ l)+i+ 1, 

i, j=O, . . . . N. 

By an inverse transform, 

we map from physical space to Fourier space. 
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Now the spectral operator L,, in physical space is given 
by 

The inverse transform of {, to 6, can be accomplished by 
an inverse cosine transform. Hence it requires 0( N2 In N) 
-arithmetic operations. 

A procedure of determining aN- 2 by means of FFTs is 
described in the following. For simplicity, we consider the 
one-dimensional case. The problem is that we want to deter- 
mine the polynomial $ N _ 2 E P, _ 2 by using the grid values 
$N+Z(~i), i= 1, . . . . N- 1, of the polynomial rjN+Z~P,,,+2 
given by 

* N+2= (1 -x2J2 L-2, L2EPN-2. 

It is immediately seen that 

S;&$EP, 

and $,( + 1) = 0. Hence we can calculate the coefficients of 
its Chebyshev series by using FFTs. Further, we have the 
identity 

(1 -x’bL2=kv. 

Since both polynomials vanish at the endpoints, it is enough 
to equate the Chebyshev coefficients of index <N - 2 on 
both sides. The Chebyshev coefficients on the left side can be 
expressed in terms of a three-term relation. The correspond- 
ing matrix is given by F = (fk,l)k,,= i ,_,,, N _ I which is defined 
by (2.11). 

In order to determine the Chebyshev coeficients of $,- 2 
we have to solve a system for F which can be accomplished 
in O(N) arithmetic operations. From numerical experi- 
ments we also found that this algorithm is robust with 
respect to roundoff errors. 

In the two-dimensional case we have to solve a system for 
the matrix 

FOF= (Ffk,,)k,,= I,..., Np, ER(~~‘)~*(~-‘)*, 

where 0 denotes the matrix tensor product. Solving a 
system with this matrix means solving a system for F twice. 
Hence the operational account for solving a system related 
to F@ F requires O(N’) arithmetic operations. From these 
considerations it becomes clear that also aN-2 can be 
evaluated by FFTs which require a total amount of 
0( N 2 In N) arithmetic operations. 

3. FINITE DIFFERENCE DISCRETIZATION 

In order to present the FD discretization of the system 
(1.5) we first introduce the one-dimensional second 
derivative operator. Let D,, E RN+ 1,N+ ’ denote the matrix 
which corresponds to the second derivative. In the colloca- 
tion points xi, i= 1, . . . . N- 1, we approximate by a three 
point star, 

where 

/I = l/(2 sin(rt/2N) sin(x/N)), 

si = sin(irc/N), 

Si+ 112 = sin( (i + l/2) n/N). 

For a definition of the FD operator in boundary points 
we introduce an outer point. If we consider the boundary 
point x0 = 1 then we introduce x ~, = 2 - cos(rc/N) and after 
eliminating this point by means of the boundary condition 
we finally obtain in x = x0, 

V’(xo) g -Ybwo) + YvGl), 

where 

y= 2 ( 
1 1 

+- 
x,-x-, x0-x-1 XI -x0 > 

= (1 -co&N))’ 

1 
= 2 . sin4(n/2N)’ 

which behaves as O(N4) for increasing N. In the same way 
we introduce around xN an outer point xN+ i = -2 + 
cos(rr/N) and obtain 

$“txN) g -y+txN) + Y+txN- 1). 

Let us further define matrices i&o E RN+‘,N- ‘, 
Do E RN-l,Nf’. &, corresponds to DFD, where the first 
an? last columns of D,, are omitted (due to the 
homogeneous boundary conditions). D&, corresponds to 
D where the first and last row are omitted (collocation 
oAy;n points of Q). Let us further denote by 1~ RN+ 1,N- 1 
10E~N-l,N+l the matrices derived from the unit matrix iid 
the same manner. 
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4 1.00 2.60 
8 1.00 2.48 

12 1.00 2.41 

Finally by means of tensor products (0 ) we are able to 
write the discrete Laplace operators: 

6,, = D,, Q I+ IQ D,,) 

A ,,=Do,,QI”+Zo@Do,,. 

- 
Here A,, yields an (N+ l)* x (N- l)* matrix and A,, 
yields an (N - 1)2 x (N+ 1)’ matrix. Now the FD system 
which corresponds to (1.5) can be written as 

In the SMG method we use an iterative method, where 
L,, is employed for preconditioning. For this reason it is 
interesting to study the exact preconditioning properties of 
L;;. In Table I we present the minimal and maximal eigen- 
values of L$ L,, for N = 4, 8, 12. The minimal eigenvalue is 
always identically 1. The maximal eigenvalues approximate 
n2/4 A 2.467 from above. Hence we obtain the same eigen- 
value bounds as already observed for the Laplacian. 
Numerically we observe that some eigenvalues in the middle 
of the eigenvalue spectrum are complex with small 
imaginary part. We remark that a further improved pre- 
conditioning can be achieved by using bilinear finite 
elements (see [6, 8, 141). But in the context with SMG 
methods (see [14]) it was found that, with respect to 
efficiency, finite element and FD preconditioning are 
comparable. 

4. SPECTRAL MULTIGRID METHOD 

For a definition of the multigrid method we have to define 
the relaxation scheme and the grid transfer operators (inter- 
polation and restriction). These multigrid components are 
used in a multigrid frame (see [Z]). This means that we first 
use a relaxation sweep on the finest grid. Then the resulting 
residual is restricted to the next coarser grid. Here once 
more we approximate the coarse grid problem by a relaxa- 
tion sweep. This procedure is continued until we arrive on 
the coarsest grid. This problem is solved exactly by a 
suitable direct solver (for instance, the Gauss method) or by 
a sufficient number of relaxation sweeps. By means of the 

interpolation we afterwards correct the approximation up 
to the finest grid. In the following we describe the specific 
components of our SMG method. 

4.1. Relaxation 

For relaxation we employ a Richardson (or Euler) 
scheme with defect correction (or preconditioning). If some 
approximations 3, _ *, [N of the spectral solution are given, 
the calculation of the new approximations J/N-2, cN 
proceeds as follows: 

1. Defect computation. 

-2. Defect correction. Compute an approximation 
[‘t;‘] to the exact solution of 

by one step of a line-Gauss Seidel relaxation. 

3. Richardson step. 

(4.1) 

with a suitable relaxation parameter o. 

The evaluation of the spectral residual (step 1) is the most 
expensive part of the relaxation procedure. The effective 
performance of this evaluation has already been described 
in Section 2. For the Richardson step (step 3) we have to 
define suitable relaxation parameters. In Section 3 we 
already observed an eigenvalue spectrum of [ 1, 7r2/4] for 
the preconditioned spectral operator. Hence the optimal 
relaxation parameter for a stationary Richardson (SR) 
relaxation is given by w  = 2/( 1 + n2/4) b 0.5768. The resulting 
convergence factor becomes 0.4232. For the nonstationary 
Richardson (NSR) relaxation the relaxation parameter 
changes as the Richardson step changes. Here we recom- 
mend a sweep of three relaxations. The corresponding 
optimal relaxation parameters are given in [12]. The con- 
vergence factor results in 0.2797. We further remark that an 
adaptive parameter choice which, for instance, results from 
a minimal residual relaxation does not work, since-due to 
the Neumann boundary conditions-the symmetric part of 
the preconditioned spectral operator is indefinite (see [4]). 

The most interesting part of the relaxation procedure is 
the defect correction, i.e., the iterative solution of the FD 
problem (4.1). From the previous considerations in 
[ 12, 131 it follows that line relaxation is necessary in order 
to obtain sufficient smoothing properties. Here we propose 
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an (alternating) line-Gauss-Seidel relaxation. For defect 
correction we employ one step of this relaxation procedure. 
Now we describe this type of relaxation in more detail. 

First we introduce a five point star which yields an 
approximation of A$ in (xi, y,), i, j= 0, . . . . N: 

(A$),j= [ f’ii,o; f$:, K:]l, II/. 

The entries of the five point star can be taken from the 
considerations in Section 3. In particular, it follows that: 

-fh,‘l(f”,)i,j+ 1 (i= 1 , . . . . N - 1). (4.5) 

f g, = 0 if (xi+k3Yj+I)$a 

Then the same sweep follows for the odd j, i.e., 
je { 1, 3, . . . . N- l}. 

forsome k,1~{-l,O, l}. Afterwards an analogous sweep is performed along the 
lines of constanty. Using the relations (4.2), (4.3) the 

Since the notation with stars requires boundary points we 
boundary values of I”, (resp. [,) are expressed by means 
of the values of i”, (resp. [,) in the points next to the 

introduce a grid function 4, which is identical to the boundary. 
homogeneous extension of I,% N _ z to the boundary: 

After one complete relaxation sweep the 
boundary values of f, can be updated by means of (4.2), 

($,,i,={L$“-2)i,i zr i~~~~,br~~~; N) 
(4.3). Hence we obtain systems of 2(N - 1) unknowns and 
equations. 

9 9 . The corresponding matrix can be split into four sub- 
matrices (see Fig. 1). The matrices on the diagonal are 

From (3.1) we derive in corner points: tridiagonal. The upper matrix is identical to the negative 
unit matrix. The lower matrix only contains nonvanishing 

tfN)i,j= -ta.tV)i,j 
entries in the first and last component of the diagonal. 

for (i,j)E {@IO), (0, NJ, W, 01, (N N)}. 
Since a Gaussian elimination procedure applied to this 

type of matrix would fill up the matrix and destroy the 
sparse structure we recommend a renumbering of the grid 

On the edges (without corners) we are able to express the points. If we, for instance, fix Jo ( 1, . . . . N - 1 } the above 
boundary values of I, by means of the values of $N in matrix is applied to the vector 
points next to the boundary: 

(ilN)O,j=fY:$($N)l,j- t2,fV)0,jY 

(I^N)N,j=fN.{,O($N)N- l,j- tak)iV,j 

C*l,j9 *2,j9 ‘.‘3 *N-l,jT il,j, 12,jT ...9 iNYl,jlT. 

(4.2) Here we employ the abbreviation: tii, j := (I,$,,,)~,~, 
ii, j  := tf,V)i, j .  

forj= 1, . . . . N- 1 and 

(4N)i,O=f$,OlC$N)i.l - tak)i,Ov 

(i^,)i.,=fb;,“I(~N)i,N- 1 - tafy)i,N 

(4.3) 

for i= 1, . . . . N- 1. 
By making use of these formulas it is possible to define the 

(alternating) line relaxation in points of Q, i.e., in (xi, y,), 
i,j=l 1 ‘.., N- 1. Let us denote by tJ”,, [“, the old 
approximations. We start with the zero grid approximation. 
Then the new approximations $N, [, can be calculated in 
the following way: 

One first relaxes along lines of constant x by solving for FIG. 1. Structure of submatrices for Gauss-Seidel line relaxation 
each jE {2,4, . . . . N-2}: (N=8). 
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TABLE II 

Amin, A,,, of L,, Preconditioned by One Line-Gauss-Seidel Step 

N Anin 1 mar 

4 1.00 2.60 
8 0.89 2.56 

12 0.49 2.54 
16 0.30 2.53 
32 0.07 2.49 

Now we renumber the components of this vector in the 
following way: 

[Cl,j, 1l/l,jY 12.j' **,j, .'.) lN-l,jy *N-l.jlT. 

After a corresponding renumbering in the matrix we obtain 
a matrix with five non-vanishing diagonals (main diagonal, 
first and second diagonals, besides the main diagonal). For 
this type of matrix the Gaussian elimination procedure can 
be performed very efficiently. There is no fill up of the zero 
diagonals and hence the computational amount of work for 
solving the systems is proportional to N. One complete 
sweep of the line-Gauss-Seidel method requires a total 
amount of work of O(N’) arithmetic operations. In Table II 
we present the minimal and maximal eigenvalues of the 
spectral operator preconditioned by one step of the above 
(alternating) line-Gauss-Seidel relaxation. The eigenvalues 
are numerically calculated by a vector iteration. The maxi- 
mal eigenvalue once more approximates the value n*/4, 
whereas the minimal eigenvalue tends to zero. For a multi- 
grid method the eigenvalue in the middle of the eigenvalue 
spectrum determines a lower bound. By numerical 
experiments we found this value to be about 1. This was also 
observed for the Laplace operator. Hence our choice of the 
relaxation parameter seems to be justified. 

We also tried to replace Cr^o,)i,oT (&L,,v by tf”,h w  (~,v)~,N 
and (Ci)o,j, (i^“,),,j by (iN)O,j, (IN)N,/. This implies a 
change in the structure of the matrices for j = 1, N- 1 and 
i= 1, N- 1. The zeros in the lower diagonals are replaced 
by non-zero components. The computational work for 
solving is nearly the same as before. The convergence factors 
are slightly improved. Hence in the following we resort to 
the previous treatment. 

4.2. Transfer Operators 

For the grid transfers we employ the standard SMG 
restriction and interpolation operators (see [3, 121). 
They consist of transforming the grid function on the finer 
grids, setting the higher Chebyshev coefficients to zero or 
appending additional zero coefficients as appropriate, and 
transforming back to the new coarser grid. In our context 
interpolation means that we add zero coefficients to the 

Chebyshev coefficients aNP2 and 6, The restriction 
operator is applied to the residuals za, dL-2 in a straight- 
forward manner. Since the inverse transform also requires 
boundary values of d”i-, we extend this grid function by 
setting the boundary values to zero. This technique was 
sucessfully employed for the Poisson problem (see [ 123). 

5. NUMERICAL RESULTS 

In the numerical computations we use a V-cycle (or 
W-cycle) with two (N=4, 8), three (N=4, 8, 16), four 
(N= 4,8, 16, 32), and five (N= 4,8, 16,32,64) grids. Fixed 
numbers nd and n, of relaxations on each grid in the 
downward and upward branches are employed. In order to 
measure the efficiency of our SMG method we calculate the 
computational amount of work. The standard work unit is 
the amount of work involved in one relaxation step on the 
finest grid. Hence we obtain, for instance, in the case of four 
grids: W= (1 + $ + h + &J(nd + n,) z 1.328125(n, + n,). In 
order to estimate the convergence speed we compute the 
spectral radius p of the SMG operator by means of 
the power method. A convergence factor which is related 
to the work W is now defined by p w  = p’lw. p w  does not 
take the total work into account but it should be near the 
smoothing rate and provide an estimate of efficiency which 
is independent of both the computer and the programmer. 

In Table III we present the spectral radii of the 
Richardson relaxation without using SMG. As it was 
expected the radii p approximate 1 for increasing N. This 
indicates a slow convergence speed of the Richardson itera- 
tion itself. In the Tables IV and V we present the numerical 
results for the SMG methods using a V-cycle (resp. 
W-cycle). For the stationary Richardson relaxation (SR) 
and nonstationary Richardson relaxation (NSR) we obtain 
the best results by choosing 

SR:n,=2,n,=O, 

NSR: nd = 3, n, = 0. 

The numerical results show the highly improved con- 
vergence factors which are now about 0.5-0.6 also for 
increasing N. Further, it becomes clear that the W-cycle 
does not improve the convergence speed significantly. In 

TABLE III 

Results for the Richardson Iteration 

N P 

8 0.5143 
16 0.8145 
32 0.9441 
64 0.9688 
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TABLE IV 

Results for the SMG Method (V-Cycle) 

Number of grids Relaxation P 

2 SR 0.21 
2 NSR 0.09 
3 SR 0.23 
3 NSR 0.08 
4 SR 0.28 
4 NSR 0.08 

Pw 

0.53 
0.52 
0.51 
0.52 
0.61 
0.53 

Poisson equation. Clearly, the solution is now more regular 
than for the second-order problem. By using standard 
regularity arguments it can be shown that tj E H4(Q), where 
H4(S2) denotes the Sobolev space which contains the four 
times (weakly) differentiable functions. 

By executing a sufficient number of multigrid steps we 
compute the absolute discretization errors: 

E2= IWN+2-$ll2 and EM= III(/N+z-~llmax 

5 SR 0.35 0.67 
5 NSR 0.10 0.56 in the discrete /,-norm )I .I1 2 and the maximum norm 11. I( max 

given by 

comparison with the numerical results for the Poisson equa- 
tion (see [12]) the convergence factors are somewhat worse 
(about 0.13 in p ,+, for the V-cycle with four grids). This small 
deterioration of the convergence factors is probably caused 
by the necessity to enforce the two types of boundary condi- 
tions on the streamfunction $. This does not lit to a second- 
order operator and perturbs the effect of smoothing. At the 
moment it is not clear how to avoid this perturbation in 
convergence speed. 

Finally, we give some numerical results for two examples. 
Here we first consider problem (1.3), where the exact 
solution is given by 

$(x, y) = sin*(2nx) sin* (27~~). (5.1) 

Second, we consider problem (1.3), where 

fsl. (5.2) 

Both examples are associated with the boundary conditions 
(1.4). In example (5.1) we have a smooth solution, whereas 
in example (5.2) we have a solution which has a mild 
singularity in the four corners. The singularity is due to the 
fact that the right-hand sidef= 1 and the boundary condi- 
tions are not compatible. The boundary conditions enforce 
dz$ = 0 in the corners, whereas we require 4*$ = 1 in the 
domain Q. A similar example was considered in [ 121 for the 

TABLE V 

Results for the SMG Method (W-cycle) 

Number of grids Relaxation P Pw 

2 SR 0.20 0.52 
2 NSR 0.09 0.52 
3 SR 0.19 0.53 
3 NSR 0.10 0.55 
4 SR 0.28 0.61 
4 NSR 0.07 0.51 
5 SR 0.34 0.67 
5 NSR 0.09 0.54 

11511,,, = Max(I[(x;, y,)l :i,j=O, . . . . N}. 

Then we count the number IT of V-cycles needed in order 
to achieve an accuracy of 

for the 1Tth approximation $ET’,. Here we start with the 
zero grid function. Now the convergence rate can be 
measured by the mean value: 

The convergence factor per work unit is given by p w  = p’? 
The numerical results are presented in the Tables VI and 
VII. They demonstrate the high accuracy of our spectral 
method which is exponential in the case of the smooth solu- 
tion (5.1). For example (5.2), the spectral method does not 
converge exponentially fast due to the singularities in the 
corners. Nine V-cycles are always enough to reach the trun- 
cation error. The convergence rate is always below 4. These 
numerical results are quite similar to the results for the 
Poisson equation in [ 123. Hence we found a SMG method 
for the Stokes problem in streamfunction-vorticity formula- 
tion which similarily works as well as for the Poisson 
equation. 

TABLE VI 

Results for Example (5.1) 

N EM E2 IT Pw 

8 2.56 x 10’ 9.36 x 10” 1 0.37 
16 5.89 x 10-j 1.35 x lo-’ 2 0.44 
32 2.17 x 10-13 5.27 x lo-l4 9 0.44 
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TABLE VII 

Results for Example (5.2) 

N EM E2 IT Dw 

8 1.55 x lo-6 4.35 x lo-’ 6 0.44 
16 4.69 x lO-9 1.19 X 1om9 8 0.47 
32 7.34 x 10-i’ 5.31 X lo-l2 8 0.48 

6. CONCLUSIONS 

We presented an efficient spectral multigrid method for 
the Stokes problem in streamfunction-vorticity formula- 
tion. Here we have two boundary conditions for the stream- 
function and none for the vorticity. Hence we introduce a 
spectral collocation method where the streamfunction is 
approximated by polynomials in P, + 2, whereas the vor- 
ticity is approximated by polynomials in PN. The corre- 
sponding spectral operator can be efficiently preconditioned 
by a suitable finite difference scheme. Hence for relaxation 
in SMG we propose a preconditioned Richardson relaxa- 
tion. The components of the SMG method are standard. 
From the numerical results (convergence factors) it can be 
seen that our SMG method for the Stokes equation yields 
a similar efficiency as already observed for the Poisson 
equation. 
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